Закон сохранения энергии механике формула физика. Закон сохранения энергии

Сведем вместе результаты, полученные в предыдущих параграфах. Рассмотрим систему, состоящую из N частиц с массами . Пусть частицы взаимодействуют друг с другом с силами , модули которых зависят только от расстояния между частицами. В предыдущем параграфе мы установили, что такие силы являются консервативными.

Это означает, что работа, совершаемая этими силами над частицами, определяется начальной и конечной конфигурациями системы. Предположим, что, кроме внутренних сил, на i-ю частицу действует внешняя консервативная сила и внешняя неконсервативная сила . Тогда уравнение движения i-й частицы будет иметь вид

Умножив i-e уравнение на и сложив вместе все N уравнений, получим:

Левая часть представляет собой приращение кинетической энергии системы:

(см. (19.3)). Из формул (23.14)-(23.19) следует, что первый член правой части равен убыли потенциальной энергии взаимодействия частиц:

Согласно (22.1) второй член в (24.2) равен убыли потенциальной энергии системы во внешнем поле консервативных сил:

Наконец, последний, член в (24.2) представляет собой работу неконсервативных внешних сил:

Приняв во внимание формулы (24.3)-(24.6), представим соотношение (24.2) следующим образом:

Величина

(24.8)

есть полная механическая энергия системы.

Если внешние неконсервативные силы, отсутствуют, правая часть формулы (24.7) будет равна нулю и, следовательно, полная энергия системы остается постоянной:

Таким образом, мы пришли к выводу, что полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной. В этом утверждении заключено существо одного из основных законов механики - закона сохранения механической энергии.

Для замкнутой системы, т. е. системы, на тела которой не действуют Никакие внешние силы, соотношение (24.9) имеет вид

В этом случае закон сохранения энергии формулируется следующим образом: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной.

Если в замкнутой системе, кроме консервативных, действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Рассматривая неконсервативные силы как внешние, можно в соответствии с (24.7) написать:

Проинтегрировав это соотношение, получим:

Закон сохранения энергии для системы невзаимодействующих частиц был сформулирован в § 22 (см. текст, следующий за формулой (22.14)).

Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем:

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами.

Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

Существует еще один вид систем - диссипативные системы , в которых механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии .

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной.

Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга.

Закон сохранения и превращения энергии - фундаментальный закон природы , он справедлив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы , например, силы трения, полная механическая энергия системы не сохраняется . Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида.

14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

Суммирование производится по всем элементарным массам m, на которые разбивается тело.

В случае непрерывного распределения масс эта сумма сводится к интегралу: где интегрирование производится по всему объему тела.

Величина r в этом случае есть функция положения точки с координатами х, у, z. Момент инерции - величина аддитивная : момент инерции тела относительно некоторой оси равен сумме моментов инерции частей тела относительно той же оси.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера :

момент инерции тела J относительно произвольной оси равен моменту его инерции Jс относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

Примеры моментов инерции некоторых тел (тела считаются однородными, m - масса тела):

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку А;

р = mv - импульс материальной точки;

L - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к.

Модуль вектора момента импульса:

где а - угол между векторами r и р;

l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса r, с некоторой скоростью Vi. Скорость Vi и импульс mV перпендикулярны этому радиусу, т. е. радиус является плечом вектора . Поэтому момент импульса отдельной частицы равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу получим, что момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость:

1. Рассмотрим свободное падение тела с некоторой высоты h относительно поверхности Земли (рис. 77). В точке A тело неподвижно, поэтому оно обладает только потенциальной энергией.В точке B на высоте h 1 тело обладает и потенциальной энергией, и кинетической энергией, поскольку тело в этой точке имеет некоторую скорость v 1 . В момент касания поверхности Земли потенциальная энергия тела равна нулю, оно обладает только кинетической энергией.

Таким образом, во время падения тела его потенциальная энергия уменьшается, а кинетическая увеличивается.

Полной механической энергией E называют сумму потенциальной и кинетической энергий.

E = E п + E к.

2. Покажем, что полная механическая энергия системы тел сохраняется. Рассмотрим еще раз падение тела на поверхность Земли из точки A в точку C (см. рис. 78). Будем считать, что тело и Земля представляют собой замкнутую, систему тел, в которой действуют только консервативныесилы, в данном случае сила тяжести.

В точке A полная механическая энергия тела равна его потенциальной энергии

E = E п = mgh .

В точке B полная механическая энергия тела равна

E = E п1 + E к1 .
E п1 = mgh 1 , E к1 = .

Тогда

E = mgh 1 + .

Скорость тела v 1 можно найти по формуле кинематики. Поскольку перемещение тела из точки A в точку B равно

s = h h 1 = , то= 2g (h h 1).

Подставив это выражение в формулу полной механической энергии, получим

E = mgh 1 + mg (h h 1) = mgh .

Таким образом, в точке B

E = mgh .

В момент касания поверхности Земли (точка C ) тело обладает только кинетической энергией, следовательно, его полная механическая энергия

E = E к2 = .

Скорость тела в этой точке можно найти по формуле= 2gh , учитывая, что начальная скорость тела равна нулю. После подстановки выражения для скорости в формулу полной механической энергии получим E = mgh .

Таким образом, мы получили, что в трех рассмотренных точках траектории полная механическая энергия тела равна одному и тому же значению: E = mgh . К такому же результату мы придем, рассмотрев другие точки траектории тела.

Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы.

Это утверждение является законом сохранения механической энергии.

3. В реальных системах действуют силы трения. Так, при свободном падении тела в рассмотренном примере (см. рис. 78) действует сила сопротивления воздуха, поэтому потенциальная энергия в точке A больше полной механической энергии в точке B и в точке C на величину работы, совершаемой силой сопротивления воздуха: DE = A . При этом энергия не исчезает, часть механической энергии превращается во внутреннюю энергию тела и воздуха.

4. Как вы уже знаете из курса физики 7 класса, для облегчения труда человека используют различные машины и механизмы, которые, обладая энергией, совершают механическую работу. К таким механизмам относят, например, рычаги, блоки, подъемные краны и др. При совершении работы происходит преобразование энергии.

Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно или какая часть совершенной (полной) работы является полезной. Эта величина называется коэффициентом полезного действия (КПД).

Коэффициентом полезного действия h называют величину, равную отношению полезной работы A n к полной работе A .

Обычно КПД выражают в процентах.

h = 100%.

5. Пример решения задачи

Парашютист массой 70 кг отделился от неподвижно висящего вертолета и, пролетев 150 м до раскрытия парашюта, приобрел скорость 40 м/с. Чему равна работа силы сопротивления воздуха?

Дано :

Решение

m = 70 кг

v 0 = 0

v = 40 м/с

sh = 150 м

За нулевой уровень потенциальной энергии выберем уровень, на котором парашютист приобрел скорость v . Тогда при отделении от вертолета в начальном положении на высоте h полная механическая энергия парашютиста, равна его потенциальной энергии E=E п = mgh , поскольку его кинети-

A ?

ческая энергия на данной высоте равна нулю. Пролетев расстояние s = h , парашютист приобрел кинетическую энергию, а его потенциальная энергия на этом уровне стала равна нулю. Таким образом, во втором положении полная механическая энергия парашютиста равна его кинетической энергии:

E = E к = .

Потенциальная энергия парашютиста E п при отделении от вертолета не равна кинетической E к, поскольку сила сопротивления воздуха совершает работу. Следовательно,

A = E к – E п;

A =– mgh .

A =– 70 кг 10 м/с 2 150 м = –16 100 Дж.

Работа имеет знак «минус», поскольку она равна убыли полной механической энергии.

Ответ: A = –16 100 Дж.

Вопросы для самопроверки

1. Что называют полной механической энергией?

2. Сформулируйте закон сохранения механической энергии.

3. Выполняется ли закон сохранения механической энергии, если на тела системы действует сила трения? Ответ поясните.

4. Что показывает коэффициент полезного действия?

Задание 21

1. Мяч массой 0,5 кг брошен вертикально вверх со скоростью 10 м/с. Чему равна потенциальная энергия мяча в высшей точке подъема?

2. Спортсмен массой 60 кг прыгает с 10-метровой вышки в воду. Чему равны: потенциальная энергия спортсмена относительно поверхности воды перед прыжком; его кинетическая энергия при вхождении в воду; его потенциальная и кинетическая энергия на высоте 5 м относительно поверхности воды? Сопротивлением воздуха пренебречь.

3. Определите коэффициент полезного действия наклонной плоскости высотой 1 м и длиной 2 м при перемещении по ней груза массой 4 кг под действием силы 40 Н.

Основное в главе 1

1. Виды механического движения.

2. Основные кинематические величины (табл. 2).

Таблица 2

Название

Обозначение

Что характери- зует

Едини ца изме- рения

Способ измерения

Вектор или скаляр

Относительная или абсолютная

Координат а

x , y , z

положение тела

м

Линейка

Скаляр

Относительная

Путь

l

изменение положения тела

м

Линейка

Скаляр

Относительная

Перемеще ние

s

изменение положения тела

м

Линейка

Вектор

Относительная

Время

t

длительность процесса

с

Секундомер

Скаляр

Абсолютная

Скорость

v

быстроту изменения положения

м/с

Спидометр

Вектор

Относительная

Ускорение

a

быстроту изменения скорости

м/с2

Акселерометр

Вектор

Абсолютная

3. Основные уравнения движения (табл. 3).

Таблица 3

Прямолинейное

Равномерное по окружности

Равномерное

Равноускоренное

Ускорение

a = 0

a = const; a =

a = ; a = w2R

Скорость

v = ; vx =

v = v 0 + at ;

vx = v 0x + axt

v = ; w =

Перемещение

s = vt ; sx =vxt

s = v 0t + ; sx =vxt+

Координата

x = x 0 + vxt

x = x 0 + v 0xt +

4. Основные графики движения.

Таблица 4

Вид движения

Модуль и проекция ускорения

Модуль и проекция скорости

Модуль и проекция перемещения

Координата*

Путь*

Равномерное

Равноускоренно е

5. Основные динамические величины.

Таблица 5

Название

Обозна- чение

Едини ца изме- рения

Что характеризует

Способ измерения

Вектор или скаляр

Относитель ная или абсолютная

Масса

m

кг

Инертность

Взаимодействие, взвешивание на рычажных весах

Скаляр

Абсолютная

Сила

F

Н

Взаимодействие

Взвешивание на пружинных весах

Вектор

Абсолютная

Импульс тела

p = m v

кгм/с

Состояние тела

Косвенный

Вектор

Относительна я

Импульс силы

F t

Нс

Изменение состояния тела (изменение импульса тела)

Косвенный

Вектор

Абсолютная

6. Основные законы механики

Таблица 6

Название

Формула

Примечание

Границы и условия применимости

Первый закон Ньютона

Устанавливаетсуществование инерциальных систем отсчета

Справедливы: в инерциальных системах отсчета; для материальных точек; для тел, движущихся со скоростями, много меньшими скорости света

Второй закон Ньютона

a =

Позволяет определить силу, действующую на каждое из взаимодействующих тел

Третий закон Ньютона

F 1 = F 2

Относится к обоим взаимодействующим телам

Второй закон Ньютона (другая формулировка)

m v m v 0 = F t

Устанавливает изменение импульса тела при действии на него внешней силы

Закон сохранения импульса

m 1 v 1 + m 2 v 2 = = m 1 v 01 + m 2 v 02

Справедлив для замкнутых систем

Закон сохранения механической энергии

E = E к + E п

Справедлив для замкнутых систем, в которых действуют консервативные силы

Закон изменения механической энергии

A = D E = E к + E п

Справедлив для незамкнутых систем, в которых действуют неконсервативные силы

7. Силы в механике.

8. Основные энергетические величины.

Таблица 7

Название

Обознач ение

Едини цаbиз ме- рения

Что характеризует

Связь с другими величинами

Вектор или скаляр

Относительная или абсолютная

Работа

A

Дж

Измерение энергии

A =Fs

Скаляр

Абсолютная

Мощность

N

Вт

Быстроту совершения работы

N =

Скаляр

Абсолютная

Механическа я энергия

E

Дж

Способность совершить работу

E = E п + E к

Скаляр

Относительная

Потенциальн ая энергия

E п

Дж

Положение

E п = mgh

E п =

Скаляр

Относительная

Кинетическа я энергия

E к

Дж

Положение

E к =

Скаляр

Относительная

Коэффициен т полезного действия

Какая часть совершенной работы является полезной


Принцип сохранения энергии - абсолютно точен, не зафиксировано случаев его нарушения. Это фундаментальный закон природы, из которого вытекают другие. Поэтому важно правильно понимать его и уметь применять на практике.

Фундаментальный принцип

Общего определения для понятия энергии не существует. Выделяют разные ее виды: кинетическую, тепловую, потенциальную, химическую. Но сути это не проясняет. Энергия - некая количественная характеристика, которая, чтобы бы не происходило, остается постоянной для всей системы. Можно наблюдать, как скользящая шайба останавливается, и заявить: энергия изменилась! На самом деле нет: механическая энергия перешла в тепловую, часть которой рассеялась в воздухе, а часть ушла на плавление снега.

Рис. 1. Переход работы, затрачиваемой на преодоление трения, в тепловую энергию.

Математик, Эмми Нетер, сумела доказать, что постоянство энергии - проявление однородности времени. Эта величина инвариантна относительно переноса вдоль временной координаты, поскольку законы природы с течением времени не меняются.

Будем рассматривать полную механическую энергию (E) и ее виды - кинетическую (T) и потенциальную (V). Если сложить их, то получим выражение для полной механической энергии:

$E = T + V_{(q)}$

Записывая потенциальную энергию, как $V_{(q)}$, указываем, что она зависит исключительно от конфигурации системы. Под q понимаются обобщенные координаты. Это могут быть x, y, z в прямоугольной декартовой системе координат, а могут быть любые другие. Чаще всего имеют дело с декартовой системой.

Рис. 2. Потенциальная энергия в поле тяжести.

Математическая формулировка закона сохранения энергии в механике выглядит так:

$\frac {d}{dt}(T+V_{(q)}) = 0$ – производная полной механической энергии по времени равна нулю.

В привычном, интегральном виде, формула закона сохранения энергии записывается так:

В механике на закон накладываются ограничения: силы, действующие на систему, должны быть консервативным (их работа зависит только от конфигурации системы). При наличии неконсервативных сил, например, трения, механическая энергия переходит в другие виды энергии (тепловую, электрическую).

Термодинамика

Попытки создать вечный двигатель особенно характерны для 18-19 веков - эпохи, когда были сделаны первые паровые машины. Неудачи, тем не менее, привели к положительному результату: было сформулировано первое начало термодинамики:

$Q = \Delta U + A$ – затрачиваемое тепло расходует на совершение работы и на изменение внутренней энергии. Это ни что иное, как закон сохранения энергии, но для тепловых двигателей.

Рис. 3. Схема паровой машины.

Задачи

Груз массой 1 кг, подвешенный на нити L=2 м, отклонили так, что высота поднятия оказалась равной 0,45 м, и отпустили без начальной скорости. Какова будет сила натяжения нити в нижней точке?

Решение:

Запишем второй закон Ньютона в проекции на ось y в момент, когда тело проходит нижнюю точку:

$ma = T – mg$, но, так как $a = \frac {v^2}{L}$, его можно переписать в новом виде:

$m \cdot \frac {v^2}{L} = T – mg$

Теперь запишем закон сохранения энергии, учитывая, что в начальном положении кинетическая энергия равна нулю, а в нижней точке - потенциальная энергия равна нулю:

$m \cdot g \cdot h = \frac {m \cdot v^2}{2}$

Тогда сила натяжения нити равна:

$T = \frac {m \cdot 2 \cdot g \cdot h}{L} + mg = 10 \cdot (0,45 + 1) = 14,5 \: Н$

Что мы узнали?

В ходе урока рассмотрели фундаментальное свойство природы (однородность времени), из которого вытекает закон сохранения энергии, рассмотрели примеры этого закона в разных разделах физики. Для закрепления материала решили задачу с маятником.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 252.

4.1. Потери механической энергии и работа непотенциальных сил. К.П.Д. Машины

Если бы закон сохранения механической энергии выполнялся в реальных установках (типа машины Обербека), тогда много расчётов можно было бы делать на основе уравнения:

Т о + П о = Т(t) + П(t) , (8)

где: Т о + П о = Е о - механическая энергия в начальный момент времени;

Т(t) + П(t) = Е(t) - механическая энергия в некоторый последующий момент времени t.

Применим формулу (8) к машине Обербека, где можно изменять высоту подъёма груза на нити (центр масс стержневой части установки не меняет своего положения). Поднимем груз на высоту h от нижнего уровня (где считаем П =0). Пусть вначале система с поднятым грузом покоится, т.е. Т о = 0, П о = mgh (m - масса груза на нити). После отпуска груза в системе начинается движение и её кинетическая энергия равна сумме энергии поступательного движения груза и вращательного движения стержневой части машины:

Т = + , (9)

где - скорость поступательного движения груза;

, J - угловая скорость вращения и момент инерции стержневой части

Для момента времени, когда груз опускается на нулевой уровень, из формул (4), (8) и (9) получаем:

mgh =
, (10)

где
, - линейная и угловая скорости в конце спуска.

Формула (10) представляет собой уравнение, из которого (в зависимости от условий опыта) можно определять скорости и, массуm , момент инерции J , либо высоту h.

Однако формула (10) описывает идеальный тип установки, при движении частей которой отсутствуют силы трения и сопротивления. Если работа таких сил не равна нулю, тогда механическая энергия системы не сохраняется. Вместо уравнения (8) в этом случае следует записать:

Т о о = Т(t) + П(t) + A s , (11)

где А s - суммарная работа непотенциальных сил за все время движения.

Для машины Обербека получаем:

mgh =
, (12)

где , k - линейная и угловая скорости в конце спуска при наличии потерь энергии.

В исследуемой здесь установке действуют силы трения на оси шкива и дополнительного блока, а также силы сопротивления атмосферы при движении груза и вращении стержней. Работа этих непотенциальных сил заметно уменьшает скорости движения частей машины.

В результате действия непотенциальных сил часть механической энергии преобразуется в другие формы энергии: внутреннюю энергию и энергию излучения. При этом работа Аs точно равна суммарному значению этих других форм энергии, т.е. всегда выполняется фундаментальный, общефизический закон сохранения энергии.

Однако в установках, где происходит движение макроскопических тел, наблюдаются потери механической энергии , определяемые величиной работы Аs. Это явление существует во всех реальных машинах. По этой причине вводится специальное понятие: коэффициент полезного действия - к.п.д . Такой коэффициент определяет отношение полезной работы к запасённой (израсходованной) энергии.

В машине Обербека полезная работа равна полной кинетической энергии в конце спуска груза на нити, и к.п.д. определяется формулой:

к.п.д .= (13)

Здесь П о = mgh - запасённая энергия, израсходованная (преобразованная) в кинетическую энергию машины и в потери энергии, равные Аs, Т к - полная кинетическая энергия в конце спуска груза (формула (9)).