Солнечный содержание. Информация о Солнце

> Солнце

Понятное описание Солнца для детей: интересные факты о звезде Солнечной системы, насколько больше Земли с фото, как появилось Солнце, из чего состоит, пятна.

Даже для самых маленьких не секрет, что появлению жизни на нашей планете мы обязаны единственной звезде системы – Солнцу. Родители или учителя в школе могут начать рассказ о Солнце и объяснение для детей с того, что, как и остальные звезды, наша выступает центром и превосходит все планеты по размеру. Если сравнивать с , то оно в 109 раз больше диаметра и занимает 99.8% всей массы системы. Интересно, что в пределах солнечного объема можно разместить примерно миллион таких же планет как наша.

Температура видимой части нагревается до 5500°C. И для Солнца это не предел, так как его ядро может накаляться до 15 миллионов °C. Родители должны объяснить детям , что перед ними настоящий ядерный реактор. Чтобы воспроизвести такое количество энергии, потребовалось бы каждую секунду взрывать 100 миллиардов тонн динамита.

Но Солнце можно назвать уникальным только потому, что в пределах его системы зародилась жизнь. Дети должны понять, что в Млечном пути насчитывают больше 100 миллиардов звездных объектов. Несмотря на то, что это центр системы, оно также проходит свой орбитальный путь вокруг галактического ядра (удалено на 25000 световых лет). На один оборот уходит целых 250 миллионов лет.

Солнце входит в состав звездного поколения Население I. Такие объекты богаты на элементы, которые тяжелее гелия, и по возрасту моложе остальных. А вот Население II и, возможно, III – это старшее поколение, представители которых пока остаются неизвестными.

Появление и эволюция Солнца - для детей

Начать объяснение для детей можно с того, что наша звезда родилась 4.6 миллиарда лет назад. Согласно главной теории, вся система образовалась из огромнейшего газового и пыльного облака, которое не прекращало вращаться, – солнечная туманность. Внутренняя сила тяжести активировала процессы разрушения, ускоряя образование и вытягивая его в форме приплюснутого диска. Из-за этого больший объем частиц направился к центру и сформировал Солнце. Ниже астрономия для детей предлагает рисунок процесса развития звезды.

У звезды довольно большой объем топлива, который позволит ей нормально функционировать еще 5 миллиардов лет. Когда оно исчерпает себя, то Солнце запустит процесс разрушения. Звезда разрастется и превратится в красного гиганта. В последствии верхние слоя уничтожатся, а ядро взорвется, перейдя в категорию белых карликов. Спустя большой период времени оно потускнеет, остынет и станет белым карликом.

Внутренняя структура и атмосфера Солнца - для детей

Следует объяснить для самых маленьких , что у любого объекта можно выделить определенные зоны. Внутренняя часть представлена ядром, радиационным и конвективным уровнями. Картинка Солнца для детей предоставляет схему состава и строения звезды.

1/4 дистанции от центра к верхней части достается ядру. При, казалось бы, небольшом объеме (всего 2% от солнечного), оно в 15 раз превышает свинцовую плотность и занимает практически половину всей звездной массы. От ядра и до поверхности (70%) расположена радиационная зона (32% объема и 48% массы). Здесь распадается свет из ядра, так что дети должны знать, что фотону могут понадобиться миллионы лет, чтобы выбраться из этого участка.

Далее к поверхности подбирается конвекционный слой (66% объема и 2% массы). Здесь можно разглядеть множество «конвекционных ячеек» с вращающимся внутри газом. Можно выделить два главных типа: грануляционные (ширина 1000 км) и супергрануляционные (30000 км в диаметре).

Ребенку будет интересно узнать, что в атмосферу входят фотосфера, хромосфера, переходный участок и корона. Кроме всего прочего, есть также и солнечные ветра, выдувающие газ из короны.

На наиболее низком слое расположилась фотосфера. Свет, излучаемый ею, мы воспринимаем как привычные солнечные лучи. При толщине в 500 км значительная порция света приходит из самой низкой части слоя. Здесь температура может варьироваться от 6125°C внизу до 4125 °C вверху.

После нее идет хромосфера. Она намного раскаленнее (19725°C) и полностью состоит из заостренных формирований, достигающих 1000 км в длину и 10000 км в высоту. Далее на несколько тысяч километров расположилась переходная полоса. Корона нагревает ее и также сбрасывает большую часть ультрафиолетовых лучей.

Выше размещена супергорячая корона, состоящая из петель и потоков ионизированного газа. Ее температура достигает от полмиллиона до 6 миллионов градусов (иногда и превышает эту отметку, доходя до нескольких десятков, если случается вспышка). На короне есть вещество, которое распространяется в форме солнечных ветров.

Химический состав Солнца - для детей

Как и прочие звезды, Солнце наполнено водородом и гелием. Но также начитывают еще 7 менее объемных компонентов. На один миллион атомов водорода выпадает: гелий (98000), кислород (850), углерод (360), неон (120), азот (110), магний (40), железо (35) и кремний (35). Несмотря на все эти цифры, дети должны знать, что водород легче всех, поэтому занимает лишь 72% солнечной массы, а вот гелию отведено 26%.

Магнитное поле

Родители могут объяснить детям , что магнитное поле Солнца в 2 раза превышает земное. Но интересно то, что оно действует неравномерно и в некоторых местах может быть активнее в 3000 раз. Подобные «шероховатости» постоянно развиваются, потому что вращение звезды намного быстрее в экваториальной части, чем в более высоких широтах. Поэтому выходит так, что скорость внутри выше чем снаружи. Именно из-за этого мы можем наблюдать солнечные пятна, вспышки и корональные выбросы массы. Самыми сильными будут вспышки, но выброс корональной массы, хоть и не так агрессивен, но задействует большое количество материала (за один раз может освободиться до 20 миллиардов тонн материи). Нижний рисунок для детей показывает влияние солнечного ветра и магнитного поля на Землю, а также их связь.

Пятна и циклы Солнца - для детей

Дети могли заметить, что в некоторых участках Солнце кажется темнее, будто с дырами. Эти особенности называют пятнами. Они достигают формы круга и прохладнее общей поверхности. Появляются в тех регионах, где прорываются плотные сгустки магнитных силовых линий.

Общее число пятен нестабильно и зависит от магнитной активности. Обычно максимум достигает 250, но затем они исчезают до минимума. Подобный цикл занимает около 11 лет. В самом конце этого процесса магнитное поле стремительно изменяет полярность.


Солнце - описание, известные параметры.

Таблица параметров Солнца:

№ п.п. Наименование параметра Данные
1 Открытие человечеством Неизвестно
2 Средний радиус 695 508 км
3 Средняя окружность (длина экватора) 4 370 005, 6 км
4 Объем 1 409 272 569 059 860 000 км 3
5 Масса 1 989 100 000 000 000 000 000 000 000 000 кг
6 Плотность 1,409 г / см 3
7 Площадь поверхности 6 078 747 774 547 км 2
8 Ускорение свободного падения 274,0 м / с 2
9 Вторая космическая скорость 2223720 км / ч
10 Период обращения вокруг своей оси 25,38 земных суток
11 Наклон вращения вокруг своей оси 7,25 о по отношению к эклиптике
12 Температура поверхности 5500 о С
13 Спектральный тип G2 V
14 Яркость 3,83 х 10 33 . эрг / сек
15 Возраст 4 600 000 000 лет
16 Состав 92,1% водород, 7,8% Гелий
17 Синодический период 27,2753 дней
18 Период вращения на экваторе 26,8 дней
19 Период вращения на полюсах 36 дней
20 Скорость относительно ближайших звезд 19,7 км / с
21 Среднее расстояние от Земли 149 600 000 (1 астрономическая единица)
22 Постоянная величина солнечного излучения, на среднем расстоянии до Земли 1,365 - 1,369 кВт / м 2

Наше Солнце является нормальной звездой G2, одной из более 100 миллиардов звезд в нашей галактике.

Солнце на сегодняшний день является крупнейшим объектом в Солнечной системе. Оно содержит более 99,8% от общей массы Солнечной системы (Юпитер содержит больше остальных планет).

Мы часто говорим, что Солнце является «обычной» звездой. Это верно в том смысле, что есть много других, подобных ему звезд. Но есть еще много меньших звезд, есть и значительно крупнее. Если все звезды расставить последовательно по массе от больших к меньшим, то Солнце войдет в первые 10% всех звезд. Средний размер звезд, по массе, в нашей галактике, вероятно, менее половины массы Солнца.

Солнце отражено во многих мифологиях: греки называли его Гелиос и римляне называли его Сол.

Солнце, в настоящее время состоит из около 70% водорода и 28% гелия по массе, все остальные элементы, в большинстве своем металлы, составляет менее 2% массы Солнца. Состав Солнца медленно изменяется с течением времени, поскольку Солнце превращает водород в гелий в своем ядре.

Внешние слои обладают дифференцированным вращением: на экваторе поверхность делает один оборот каждые 25,4 дней, вблизи полюсов, примерно за 36 дней. Это странное поведение связано с тем, что Солнце не является твердым телом, как на Земле. Аналогичные эффекты наблюдаются в газовых планетах Солнечной системы. Дифференцированное вращение распространяется и вниз в недра Солнца, но ядро Солнца вращается как твердое тело.

Ядро, это, скорее всего 25% радиуса Солнца. Температура ядра 15600000 градусов Кельвина и давление 250 000 000 000 атмосфер. В центре ядра плотность Солнца в 150 раз больше, чем воды.

Энергетическая мощность Солнца около 386 000 000 000 млрд. МВт. Каждую секунду около 700 000 000 тонн водорода превращается в 695 000 000 тонн гелия и 5000000 тонн вещества (= 3.86e33 эрг) выделяется в виде энергии гамма-лучей.

Поверхности Солнца, называется фотосферой, температура на поверхности около 5800 К. Температура на солнечных пятнах только 3800 К (они выглядят темными по сравнению с окружающими областями Солнца). Размер солнечных пятен может составлять до 50000 км в диаметре. Солнечные пятна вызваны сложным, и пока, досконально не изученным взаимодействием с магнитным полем Солнца.

Выше поверхности Солнца лежит хромосфера.


Сильно разреженная область выше хромосферы, называемая короной, она простирается на миллионы километров в пространстве, но видна только во время полного солнечного затмения. Температура короны более 1000000 К.

По совпадению Луна и Солнце имеют один угловой размер, если смотреть с Земли. Затмения Солнца происходят раз или два в год в конкретных областях Земли.

Магнитное поле Солнца очень сильное и сложное по строению, магнитосфера Солнца (также известная как гелиосфера) простирается далеко за пределы орбиты Плутона.

В дополнение к теплу и свету, Солнце испускает поток заряженных частиц (в основном протонов и электронов), известный как солнечный ветер, распространяющийся по всей Солнечной системе со скоростью в 450 км/сек.

Последние данные с космического аппарата Ulysses , показывают, что во время минимума солнечного цикла, солнечный ветер, испускаемый из полярных полюсов, движется со скоростью 750 километров в секунду, что в два раза меньше скорости солнечного ветра, испускаемого на экваторе.

В состав солнечного ветра, как представляется, также отличаются в полярных регионах. Во время солнечного максимума, однако, солнечный ветер движется с промежуточной скоростью.

Солнечный ветер оказывает большое влияние на хвосты комет и даже имеет заметное воздействие на траектории космических кораблей.

Возраст Солнца составляет около 4,5 миллиарда лет. С момента своего рождения оно уже истратило около половины водорода в своем ядре. Он будет продолжать излучать тепло еще 5 миллиардов лет. Но, в конце концов, оно исчерпает водородное топливо.

(Фото солнца №1)

Информация о солнце, как об одной из подобных звезд.

У солнца есть характеристики, которые мы встречаем и в других звездах галактики. Например, солнце по своим размерам и цвету излучения является желтым карликом, как некоторые другие звезды, четвертой по яркости звездой из пятидесяти звездных систем, замеченных астрономами. Это звезда – одиночка, которая излучает волны разных длин (инфракрасные лучи, гамма-лучи, рентгеновские лучи, радио лучи), но больше всего волны видимые, желто-зеленого цвета. Солнце ощутимо влияет комплексом этих излучений (солнечным ветром) на Землю, но земля не беззащитна, ее оберегает от вредного воздействия солнечных лучей атмосфера и магнитосфера.

По составу солнце – шар из плазмы, то есть из комплекса заряженных частиц, которые взаимодействуют друг с другом, это ядра атомов гелия, водорода и также электроны. Результат этого взаимодействия – наличие магнитного поля у звезды, которое и удерживает вокруг себя солнечные спутники - планеты.

Благодаря магнитным процессам на поверхности солнца мы наблюдаем эдакие солнечные пятна . Интересно, что они возникают не по одному, а парами в местах выхода и входа искаженного магнитного поля, в виде водоворотов раскаленного газа. Искажение магнитного поля солнца бывает разной силы в разные года. Оно меняется в течении 11, 2 лет, этот период назван солнечным годом. В зависимости от активности солнца солнечные пятна на нем появляются и исчезают.

Информация о строении солнца вкратце.

(Фото солнца №2)

То, что мы видим на поверхности солнца названо фотосферой, эта внешняя оболочка нашего светила имеет толщину 300 км и находится в постоянном движении энергии. Далее, направляясь вглубь к центру солнца, ученые предполагают конвекционный слой, в котором энергия, излучаемая ядром звезды, переносится из внутренних слоев к внешним, там фотоны стремятся наружу, поглощаются материей солнца, и вновь излучаются, они там как бы перемешиваются. И конечно же солнце имеет ядро в центре, которое и производит ядерные реакции, оно плотное и более горячее, чем поверхностный слой солнца. У солнца также есть атмосфера, названная солнечной короной, но она в отличии от земной не состоит из кислорода и углекислого газа, но это само излучение солнца, горячее во много раз, чем тело солнца, поэтому во время затмений корону хорошо видно, Она рассеивается по мере удаления от звезды видимо на 5 радиусов солнца, и дальше на более 10 радиусов нашего светила. Солнечные спутники, как и Земля находятся внутри этой короны, но на дальней ее границе. Подобное строение имеют большинство классических звезд.

Из солнечной короны вырывается солнечный ветер , который несет с собой частицы массы тела солнца. За 150 лет солнце теряет массу (ионизированные частицы – протоны, электроны, α-частицы) равную массе Земли. Солнечный ветер активно воздействует на атмосферу Земли, например, он создает полярные сияния и геомагнитные бури.

Информация о солнечных вспышках и корональных выбросах.

Время от времени в атмосфере солнца возникает выброс энергии, который назван солнечной вспышкой, она отличается от выброса короны солнца, о чем будет сказано далее в статье. Эта вспышка по времени занимает несколько минут и ее очень сложно прогнозировать. Выделение энергии на столько мощное, что ощутимо влияет на сотовую связь, измерительные электромагнитные приборы, вызывает электромагнитные бури. Корональные выбросы – это выбросы солнечной массы в части атмосферы солнца – солнечной короны, наблюдать их очень сложно, так как мешает свечение солнца, но возможно только с помощью специальных приборов. Корональный выброс состоит из плазмы (состав ионы, протоны, небольшое кол-во гелия и кислорода), имеет форму гигантской петли и может по времени не совпадать с солнечными вспышками. Такие вспышки и выбросы имеют некоторые звезды во вселенной, но у них они бывают намного мощнее, чем у солнца и препятствуют существованию жизни на их спутниках.

Информация о солнце и солнечных затмениях.

Солнечное затмение – это, когда луна находится между солнцем и землей. Солнце не висит в пространстве без движения, оно вращается вокруг самого себя с определенной скоростью, также и луна не стоит на месте, но вращается вокруг солнца. И бывают периодично сегменты времени, когда ночное светило оказывается четко между землей и солнцем и заслоняет частично или полностью от нашего взгляда свет, тогда можно увидеть корону солнца. В среднем солнечные затмения можно увидеть 2 раза в году с разных точек земного шара. Во время этого явления по Земле перемещается круглая лунная тень, которая может накрыть крупный город. С одного и того же места солнечное затмение, можно увидеть невооруженным глазом только раз в 200-300 лет.

Все про Солнце и его местоположении в Галактике .

Если выразится кратко, наша звезда расположена в Млечном пути – спиральной галактике с перемычкой, от центра ее наше светило удалено на 26 000 световых лет. Солнце перемещается вокруг Млечного пути, и делает один оборот за 225-250 мил. лет. В данный момент наша звезда находится на крае рукава Ориона изнутри, между рукавом Стрельца и рукавом Персея, это место еще названо «местным межзвездным облаком» - это плотное скопление межзвездного газа с температурой почти равной температуре Солнца. Это облако в свою очередь находится в «местном пузыре» - это территория горячего межзвездного газа, разряженного по своей структуре больше, чем межзвездное облако.

Информация о солнце в цифрах:

Расстояние от земли до солнца (в среднем) - 149600000 км, 92937000 миль.

Диаметр солнечного диска - 1392000 км, 864950 миль, в 109 больше диаметра земли)

Масса солнца - 1.99 x 1030 кг, в 333000 раз больше массы Земли

Плотность солнца в среднем - 1.41 г/см 3 (1/4 земли)

Температура поверхности солнца - 5,470 °C (9,880 °F), температура ядра солнца - 14000000 °C (25000000 °F)

Выходная мощность - 3.86 x 10 26 ватт

Период вращения по отношению к земле - 26.9 (экватор), 27.3 (зона солнечных пятен, 16°N), 31.1 (полюс)

Информация о солнце - уникальной звезде.

(Фото солнца №3)

Информация о солнце и его происхождении.

Есть два основных взгляда на происхождение солнца. Атеисты и эволюционисты верят, что Солнце – обычная звезда из многих звезд, которые возникли в сжавшейся газопылевой туманности. Но основательных доказательств такого происхождения и процесса формирования звезды мы не имеем и не можем иметь, это всего лишь предположения, основанные на вере, что разумного Создателя нет, и все произошло благодаря ряду случайностей. Второй же взгляд на происхождение Солнца основан на историческом документе, который сохранился неизменным много столетий – это Библия. Итак, ссылаясь на этот исторический документ, мы узнаем из 1 главы Бытия, что Солнце по Своему разумному замыслу сформировал и разместил в галактике Сам Создатель всего материального и нематериального. Подробнее о научном взгляде на происхождение Солнца в статье .

Все о молодости солнца вкратце.

Информация о солнце и его уникальном постоянстве.

Для того, чтобы на Земле существовала жизнь, ее звезда должна поддерживать положительное постоянное влияние на свой спутник. Солнце для этого подходит по всем параметрам.

Судьба солнца.

Есть разные предположения, как Солнце закончит свое существование, но это предположения ограниченного человека, который может только гадать. Но есть свидетельство более надежное, чем измышления ученых атеистов.

В Библии говорится в Откровении Иоанна 6гл. 12 стих о Великом суде над человечеством за их отступничество от Творца « И когда Он снял шестую печать, я взглянул, и вот, произошло великое землетрясение, и солнце стало мрачно как власяница (рубище), и луна сделалась как кровь…» Образным языком здесь описывается конец существования нашего мира. И это случится не через миллионы лет, как считают атеисты, но возможно в ближайшие тысячелетия, этого времени никто не знает, но оно обязательно будет.

То, что без Солнца жизнь на Земле не существовала бы, люди поняли давным-давно, ведь его возвеличивали, ему поклонялись, а отмечая день Солнца, нередко приносили человеческие жертвы. За ним наблюдали и, создавая обсерватории, решали такие простые на первый взгляд вопросы о том, почему Солнце светит днём, какова по своей сути природа светила, когда происходит закат Солнца, где оно встаёт, какие объекты находятся вокруг Солнца, и планировали свою деятельность на основе полученных данных.

Ученые не догадывались, что на единственной звезде Солнечной системы существуют времена года, очень напоминающие «сезон дождей» и «сухой сезон». Активность Солнца попеременно возрастает то в северном, то в южном полушарии, длится одиннадцать месяцев, и столько же времени снижается. Наряду с одиннадцатилетним циклом его активности напрямую зависит жизнь землян, поскольку в это время из недр звезды выбрасываются мощные магнитные поля, вызывающие опасные для планеты солнечные возмущения.

Возможно, кое-кто удивится, узнав, что Солнце планетой не является. Солнце — это огромный, светящийся, состоящий из газов шар, внутри которого постоянно происходят термоядерные реакции, выделяющие энергию, дающую свет и тепло. Интересно, что подобной звезды в Солнечной системе не существует, а потому оно притягивает к себе все объекты более мелких размеров, оказавшиеся в зоне его гравитации, в результате чего они начинают вращаться вокруг Солнца по траектории.

Естественно, в космосе Солнечная система находится не сама по себе, а входит в состав Млечного пути, галактики, что являет собой огромную звёздную систему. От центра Млечного пути, Солнце отделяет 26 тыс. световых лет, поэтому движение Солнца вокруг него составляет один оборот за 200 млн. лет. А вот вокруг своей оси звезда оборачивается за месяц – и то, данные эти приблизительны: оно являет собой плазмовый шар, составные которого вращаются с разной скоростью, а потому трудно сказать, сколько именно времени уходит на полный оборот. Так, например, в районе экватора это происходит за 25 дней, у полюсов – на 11 дней больше.

Из всех известных на сегодняшний день звёзд, по яркости наше Светило находится на четвёртом месте (когда звезда проявляет солнечную активность, она светит ярче, чем когда спадает). Сам по себе этот огромный газообразный шар белого цвета, но из-за того, что наша атмосфера поглощает волны короткого спектра и луч Солнца у поверхности Земли рассеивается, свет Солнца становится желтоватого оттенка, а белый цвет можно увидеть разве что в ясный погожий день на фоне голубого неба.

Будучи единственной звездой Солнечной системы, Солнце также является единственным источником её света (не считая очень далёких звёзд). Несмотря на то, что Солнце и Луна на небе нашей планеты являются самыми крупными и яркими объектами, разница между ними огромная. Тогда как Солнце само излучает свет, спутник Земли, будучи абсолютно тёмным объектом, просто отражает его (можно сказать, что мы также видим Солнце ночью, когда на небе находится освещённая им Луна).

Светило Солнце – звезда молодая, её возраст, по оценкам учёных, составляет более четырёх с половиной миллиардов лет. А потому относится к звезде третьего поколения, которая была образована из остатков ранее существующих звёзд. Его по праву считают самым большим объектом Солнечной системы, поскольку его вес в 743 раза больше массы всех планет, вращающихся вокруг Солнца (наша планета в 333 тысяч раз легче Солнца и меньше его в 109 раз).

Атмосфера Солнца

Так как температурные показатели верхних слоёв Солнца превышают 6 тыс. градусов Цельсия, оно твёрдым телом не является: при такой высокой температуре любой камень или металл трансформируется в газ. К таким выводам учёные пришли недавно, поскольку раньше астрономы выдвигали предположение, что излучаемый звездой свет и тепло являются результатом горения.

Чем больше астрономы наблюдали за Солнцем, тем понятней становилось: его поверхность накалена до предела вот уже несколько миллиардов лет, а так долго ничего гореть не может. По одной из современных гипотез, внутри Солнца происходят те же процессы, что в атомной бомбе – материя преобразовывается в энергию, и в результате термоядерных реакций водород (его доля в составе звезды составляет около 73,5 %) трансформируется в гелий (почти 25%).

Слухи о том, что Солнце на Земле рано или поздно погаснет, не лишены оснований: количество водорода, находящегося в ядре, не безгранично. По мере его сгорания внешний слой звезды будет расширяться, в то время как ядро, наоборот, уменьшаться, в результате чего жизнь Солнца закончится, и оно преобразуется в туманность. Начнётся этот процесс нескоро. По расчётам учёных, это произойдёт не ранее, чем через пять-шесть миллиардов лет.

Что касается внутренней структуры, то поскольку звезда являет собой газообразный шар, с планетой его объединяет разве что наличие ядра.

Ядро

Именно здесь происходят все термоядерные реакции, порождающие тепло и энергию, которые, минуя все последующие слои Солнца, покидают её в виде солнечного света и кинетической энергии. Солнечное ядро простирается от центра Солнца на расстояние в 173 000 км (приблизительно 0,2 солнечного радиуса). Интересно, что в ядре звезда вокруг своей оси вращается намного быстрее, чем в верхних слоях.

Зона лучистого переноса

Ушедшие из ядра фотоны в зоне лучистого переноса сталкиваются с плазмовыми частицами (ионизированным газом, образованным из нейтральных атомов и заряженных частиц, ионов и электронов) и обмениваются с ними энергией. Столкновений наблюдается так много, что фотону, дабы миновать этот слой, иногда требуется около миллиона лет, и это несмотря на то, что плотность плазмы и её температурные показатели у внешней границы уменьшаются.

Тахоклин

Между зоной лучистого переноса и конвективной зоной находится очень тонкий слой, где происходит формирование магнитного поля – силовые линии электромагнитного поля вытягиваются плазмовыми потоками, увеличивая его напряжённость. Есть все основания предполагать, что здесь плазма значительно изменяет свою структуру.


Конвективная зона

Возле солнечной поверхности, температуры и плотности вещества становится недостаточно для того, чтобы энергия Солнца переносилась лишь с помощью переизлучения. Поэтому здесь плазма начинает вращаться, образовывая вихри, перенося энергию к поверхности, при этом чем ближе к внешнему краю зоны, тем больше она охлаждается, а плотность газа уменьшается. В то же время охлаждённые на поверхности частицы находящейся над ней фотосферы уходят в конвективную зону.

Фотосфера

Фотосферой называют самую яркую часть Солнца, которую можно увидеть с Земли в виде солнечной поверхности (называется она так условно, поскольку тело, состоящее из газа, поверхности не имеет, поэтому её относят к части атмосферы).

По сравнению с радиусом звезды (700 тыс. км) фотосфера представляет собой очень тонкий слой толщиной от 100 до 400 км.

Именно здесь во время проявления солнечной активности происходит выделение световой, кинетической и тепловой энергии. Поскольку температура плазмы в фотосфере ниже, чем в остальных местах, и присутствует сильное магнитное излучение, в неё формируются солнечные пятна, порождающие всем известный феномен, как вспышки на Солнце.


Хотя вспышки на Солнце непродолжительны, энергии в этот период выбрасывается чрезвычайно много. А проявляется она в виде заряженных частиц, ультрафиолетового, оптического, рентгеновского или гамма-излучения, а также плазмовых течений (на нашей планете они вызывают магнитные бури, негативно влияющие на здоровье людей).

Газ в этой части звезды относительно разряжён и вращается очень неравномерно: его оборот в районе экватора составляет 24 дня, на полюсах – тридцать. В верхних слоях фотосферы зафиксированы минимальные температурные показатели, из-за которых из 10 тыс. атомов водорода только один имеет заряженный ион (несмотря на это, даже в этой области плазма является достаточно ионизированной).

Хромосфера

Хромосферой называют верхнюю оболочку Солнца толщиной в 2 тыс. км. В этом слое температура резко возрастает, а водород и другие вещества начинают активно ионизироваться. Плотность этой части Солнца обычно невысока, а потому с Земли трудно различима, и увидеть её можно лишь в случае затмения Солнца, когда Луна закрывает собой более яркий слой фотосферы (хромосфера в это время светится красным цветом).

Корона

Корона является последней внешней, сильно раскалённой оболочкой Солнца, которая видна с нашей планеты во время полного солнечного затмения: она напоминает лучистый ореол. В другое время увидеть её невозможно из-за очень невысокой плотности и яркости.


Состоит она из протуберанцев, фонтанов раскалённого газа высотой до 40 тыс. км, и энергетических извержений, которые на огромной скорости уходят в космос, образуя солнечный ветер, состоящий из потока заряженных частиц. Интересно, что именно с солнечным ветром связаны многие природные явления нашей планеты, например, северное сияние. Надо заметить, что солнечный ветер сам по себе чрезвычайно опасен, и если нашу планету не защищала атмосфера, то он погубил бы всё живое.

Земной год

Вокруг Солнца наша планета движется на скорости около 30 км/с и период полного её оборота равняется одному году (длина орбиты составляет более 930 млн. км). В точке, где солнечный диск находится ближе всех к Земле, нашу планету от звезды отделяет 147 млн. км, а в наиболее удалённой точке – 152 млн. км.

Видимое с Земли «движение Солнца» изменяется на протяжении целого года, а его траектория напоминает восьмёрку, вытянутую вдоль оси Земли с севера на юг с уклоном в сорок семь градусов.

Происходит это из-за того, что угол отклонения оси Земли от перпендикуляра к плоскости орбиты составляет около 23,5 градусов, а поскольку наша планета вращается вокруг Солнца, лучи Солнца ежедневно и ежечасно (не считая экватора, где день равен ночи) меняют угол своего падения в одной и той же точке.

Летом в северном полушарии наша планета наклонена в сторону Светила, а потому лучи Солнца освещают земную поверхность максимально интенсивно. А вот зимой, поскольку путь солнечного диска по небу проходит очень низко, луч Солнца падает на нашу планету под более крутым углом, а потому земля прогревается слабо.


Средняя температура устанавливается, когда наступает осень или весна и Солнце расположено на одинаковом расстоянии по отношению к полюсам. В это время ночи и дни имеют приблизительно одинаковую продолжительность – и на Земле создаются климатические условия, являющие собой переходной этап между зимой и летом.

Такие изменения начинают проходить ещё зимой, после зимнего солнцестояния, когда траектория движения Солнца по небосводу изменяется, и оно начинает подниматься.

Поэтому, когда наступает весна, то Солнце приближается ко дню весеннего равноденствия, продолжительность дня и ночи становится одинаковой. Летом, 21 июня, в день летнего солнцестояния, солнечный диск достигает наивысшей точки над горизонтом.

Земной день

Если на небосвод смотреть с точки зрения землянина в поисках ответа на вопрос, почему Солнце светит днём и где оно встаёт, то вскоре можно убедиться, что Солнце всходит на востоке, а его заход можно увидеть на западе.

Происходит это из-за того, что наша планета не только движется вокруг Солнца, но ещё и вращается вокруг своей оси, совершая полный оборот за 24 часа. Если смотреть на Землю из космоса, то можно увидеть, что она, как большинство планет Солнца, оборачивается против часовой стрелки, с запада на восток. Стоя на Земле и наблюдая за тем, где Солнце показывается утром, всё видится в зеркальном отражении, а потому Солнце встаёт на востоке.

При этом наблюдается интересная картина: человек, наблюдая за тем, где Солнце находится, стоя на одной точке, вместе с Землёй движется в восточном направлении. В это же время части планеты, которые расположены в западной стороне, одну за другой постепенно начинает освещать свет Солнца. Так. например, восход Солнца на восточном побережье США можно увидеть на три часа раньше до того, как Солнце встаёт на западном.

Солнце в жизни Земли

Солнце и Земля настолько связаны друг с другом, что роль самой крупной звезды на небе трудно переоценить. Прежде всего, вокруг Солнца образовалась наша планета и появилась жизнь. Также энергия Солнца согревает Землю, луч Солнца освещает её, формируя климат, охлаждая её ночью, а после того, как Солнце всходит, снова согревает её. Что говорить, даже воздух с его помощью приобрёл свойства, необходимые для жизни (если не луч Солнца, он представлял бы собой жидкий океан из азота, окружающий глыбы льда и промёрзшую сушу).

Солнце и Луна, являясь крупнейшими объектами на небосводе, активно взаимодействуя друг с другом, не только освещают Землю, но и прямо влияют на движение нашей планеты – ярким примером этого действия являются приливы и отливы. На них воздействует Луна, Солнце в этом процессе находится на вторых ролях, но без его влияния тоже не обходится.

Солнце и Луна, Земля и Солнце, воздушные и водные потоки, окружающая нас биомасса, являются доступным, постоянно возобновляющимся энергетическим сырьём, который можно легко использовать (оно лежит на поверхности, его не нужно добывать из недр планеты, оно не образует радиоактивных и токсичных отходов).

Чтобы обратить внимание общественности на возможность использования возобновляемых источников энергии, с середины 90-х гг. прошлого столетия было принято решение отмечать Международный день Солнца. Таким образом, ежегодно, 3 мая, в день Солнца по всей территории Европы проводят семинары, выставки, конференции, направленные на то, чтобы показать людям, как можно использовать луч светила во благо, как определить время, когда происходит закат или рассвет Солнца.

Например, в день Солнца можно побывать на специальных мультимедийных программах, увидеть в телескоп огромные области магнитных возмущений и различные проявления солнечной активности. В день Солнца можно посмотреть на различные физические опыты и демонстрации, наглядно демонстрирующие, насколько мощным источником энергии является наше Светило. Нередко в День Солнца посетители получают возможность создать солнечные часы и проверить их в действии.

Исследование Солнца проводилось многими КА которых насчитывается около двух сотен (194), но были и специализированные, это:
Первыми космическими аппаратами, предназначенными для наблюдений Солнца, были созданные NASA спутники серии Пионер с номерами 5-9, запущенные между 1960 и 1968 годами. Эти спутники вращались вокруг Солнца вблизи орбиты Земли и выполнили первые детальные измерения параметров солнечного ветра.
Орбитальная солнечная сбсерватория ("OSO") - серия американских спутников, запущенных в период 1962- 1975гг с целью изучений Солнца, в частности, в ультрафиолетовом и рентгеновском диапазонах волн.
КА "Helios-1" - западногерманская АМС запущена 10.12.1974г, предназначенная для исследования солнечного ветра, межпланетного магнитного поля, космического излучения, зодиакального света, метеорных частиц и радиошумов в околосолнечном пространстве, а также для проведения экспериментов по регистрации явлений, предсказанных общей теорией относительности. 15.01.1976г выведен на орбиту западногерманский КА "Helios-2 ". 17.04.1976г "Helios-2" (Helios )впервые приблизилась к Солнцу на расстояние 0,29 а.е (43,432 млн.км). Зарегистрированы, в частности, магнитные ударные волны в диапазоне 100 - 2200 Гц, а также появление при солнечных вспышках ядер легкого гелия, что указывает на высокоэнергетические термоядерные процессы в хромосфере Солнца. Другое интересное наблюдение, сделанное в рамках этой программы, состоит в том, что пространственная плотность мелких метеоритов вблизи Солнца в пятнадцать раз выше, чем около Земли. Впервые достигнут рекордной скорости в 66,7км/с, двигаясь с 12g.
В 1973 году вступила в строй космическая солнечная обсерватория (Apollo Telescope Mount) на космической станции Skylab . С помощью этой обсерватории были сделаны первые наблюдения солнечной переходной области и ультрафиолетового излучения солнечной короны в динамическом режиме. С её помощью были также открыты «корональные извержения массы» и корональные дыры, которые, как сейчас известно, тесно связаны с солнечным ветром.
Спутник по изучению максимума солнечной активности ("SMM") - Американский спутник (Solar Maximum Mission - SMM), запущенный 14.02.1980г для наблюдений ультрафиолетового, рентгеновского и гамма-излучений от солнечных вспышек в период высокой солнечной активности. Однако всего через несколько месяцев после запуска из-за неисправности электроники зонд перешёл в пассивный режим. В 1984 году космическая экспедиция STS-41C на шаттле Челленджер устранила неисправность зонда и снова запустила его на орбиту. После этого, до своего входа в атмосферу в июне 1989 года, аппарат получил тысячи снимков солнечной короны. Его измерения помогли также выяснить, что мощность полного излучения Солнца за полтора года наблюдений изменилась только на 0,01 %.в период максимума солнечной активности.
Японский космический аппарат Yohkoh (Ёко , «Солнечный свет»), запущенный в 1991 году, проводил наблюдения излучения Солнца в рентгеновском диапазоне. Полученные им данные помогли учёным идентифицировать несколько разных типов солнечных вспышек и показали, что корона даже вдали от областей максимальной активности намного более динамична, чем принято было считать. Yohkoh функционировал в течение полного солнечного цикла и перешёл в пассивный режим во время солнечного затмения 2001 года, когда он потерял свою ориентировку на Солнце. В 2005 году спутник вошёл в атмосферу и был разрушен.
Солнечный зонд "Ulysses " - европейская автоматическая станция запущена 6 октября 1990г для измерения параметров солнечного ветра, магнитного поля вне плоскости эклиптики, изучения полярных областей гелиосферы. Провел сканирование экваториальной плоскости Солнца вплоть до орбиты Земли. Впервые зарегистрировал в радиоволновом диапазоне спиральную форму магнитного поля Солнца, расходящуюся веером. Установил, что напряженность магнитного поля Солнца возрастает со временем и за последние 100 лет увеличилась в 2,3 раза. Это единственный КА, движущийся перпендикулярно плоскости эклиптики по гелиоцентрической орбите. Пролетел в середине 1995г над южным полюсом Солнца при его минимальной активности, а 27.11.2000г пролетел во второй раз, достигнув максимальной широты в южном полушарии -80,1 град. 17.04.1998 АС " Ulysses" завершила свой первый виток вокруг Солнца. 7 февраля 2007г зонд Ulysses "преодолел" важную веху в ходе своей миссии - в третий раз за время полета он прошел над 80-м градусом южной широты на поверхности Солнца. Этот проход по траектории над полярной областью нашего светила начался в ноябре 2006 года и стал третьим за шестнадцатилетнюю историю эксплуатации зонда. Раз в 6,2 года он совершает виток вокруг нашего светила и в ходе каждого оборота проходит над полярными областями Солнца. В ходе пролёта учёные получили много новой научной информации. В ходе таких облётов сначала спутник огибает южный полюс Солнца, а затем - северный. Ulysses подтвердил существование быстрого солнечного ветра от солнечных полюсов примерно 750 км/с, что меньше, чем ожидалось.
Спутник для изучения солнечного ветра "Wind " -
американский научно-исследовательский аппарат, запущен 1 ноября 1994 года на орбиту с параметрами: наклонение орбиты - 28,76º; Т=20673,75 мин.; П=187 км.; А=486099 км. 19.08.2000г совершил 32-й пролет близь Луны. Используя космический аппарат WIND, исследователи смогли сделать редкие прямые наблюдения магнитного перезамыкания, которое позволяет магнитному полю Солнца, проводимому солнечным ветром, связываться с магнитным полем Земли, пропуская при этом плазму и энергию от Солнца в земное пространство, что вызывает полярные сияния и магнитные бури.
Солнечная и гелиосферная обсерватория ("SOHO ") -
Научно-исследовательский спутник (Solar and Heliospheric Observatory - SOHO), запущенный Европейским космическим агентством 2 декабря 1995г с предполагаемым сроком работы около двух лет. Он был выведен на орбиту вокруг Солнца в одной из точек Лагранжа (L1), где уравновешиваются гравитационные силы Земли и Солнца. Двенадцать инструментов на борту спутника предназначены для исследования солнечной атмосферы (в частности ее нагревания), солнечных колебаний, процессов выноса солнечного вещества в пространство, структуры Солнца, а также процессов в его недрах. Ведет постоянное фотографирование Солнца. 04.02.2000г своеобразный юбилей отметила солнечная обсерватория "SOHO". На одной из фотографий, сделанных "SOHO" обнаружена новая комета, ставшую 100-й в послужном списке обсерватории, а в июне 2003г открыла уже 500-ю комету. 15 января 2005 года была открыта уже 900-я хвостатая странница. А юбилейную, 1000-ю открыл 5 августа 2005г. 25 июня 2008 года с помощью полученных солнечной обсерваторией SOHO данных была открыта «юбилейная», 1500-я комета.
Постоянные наблюдения с помощью обсерватории SOHO показали, что супергранулы движутся через солнечную поверхность быстрее, чем вращается Солнце. В январе 2003 года группе ученых, которой руководит Лоран Жизон из Стенфордского университета, удалось объяснить это загадочное явление. Супергрануляция - это картина активности, которая волной перемещается по солнечной поверхности. Это явление можно сравнить с «движением волны» на трибунах стадиона, когда каждый из сидящих друг за другом болельщиков встает со своего места на короткое время, а затем садится, но не двигается ни вправо, ни влево, при этом для наблюдателя со стороны создается иллюзия бегущей по трибуне волны. Аналогичные волны создаются поднимающимися и опускающимися супергранулами. Волны распространяются по всем направлениям через солнечную поверхность, но по каким-то причинам они сильнее (имеют большую амплитуду) в направлении солнечного вращения. Так как эти волны наиболее выделяются, то и создается иллюзия, что они движутся быстрее скорости вращения Солнца. Достаточно трудно сделать предположение о физической причине этого явления, но, вероятно, само вращение является источником волн супергрануляции.
Видеофильмы, сделанные на основе новых наблюдений, переданных аппаратом TRACE, позволили астрономам увидеть яркие вкрапления плазмы, пробегающие по корональным петлям вверх и вниз. Данные, полученные с SOHO, подтвердили, что эти вкрапления двигаются с огромной скоростью, и позволили сделать вывод, что корональные петли - это не статические структуры, наполненные плазмой, а, скорее, ее сверхскоростные потоки, которые «выстреливаются» с солнечной поверхности и «разбрызгиваются» между структурами в короне.
Спутник для изучения короны Солнца "TRACE (Transition Region & Coronal Explorer)" запущен 2.04.1998г на орбиту с параметрами: орбиты - 97,8 градуса; Т=96,8 минуты; П=602 км.; А=652 км.
Задача - исследовать область перехода между короной и фотосферой с помощью 30-см ультрафиолетового телескопа. Исследование петель показало, что они состоят из ряда связанных друг с другом отдельных петель. Петли газа нагреваются и поднимаются вдоль линий магнитного поля на высоту до 480000 км, затем охлаждаясь падают назад со скоростью более 100 км/с.
31 июля 2001г запущен российско-украинская обсерватория «Коронас-Ф » для наблюдения солнечной активности и исследование солнечно-земных связей. Спутник находится на околоземной орбите с высотой около 500 км и наклонением 83 град. Его научный комплекс включает 15 приборов, которые наблюдают Солнце во всем диапазоне электромагнитного спектра - от оптики до гамма.
За время наблюдения приборы КОРОНАС-Ф зарегистрировали самые мощные вспышки на Солнце и их воздействие на околоземное космическое пространство, получено огромное количество рентгеновских солнечных спектров и изображений Солнца, новые данные о потоках солнечных космических лучей и ультрафиолетового излучения Солнца. /подробнее новости от 17.09.2004г/.
Спутник "Genesis " для изучения солнечного ветра запущен 8 августа 2001 года. Выйдя в точке либрации L1 американский исследовательский зонд 3 декабря 2001 года начал сбор солнечного ветра. Всего же Genesis собрал от 10 до 20 мкг элементов солнечного ветра - а это вес нескольких крупинок соли, - представляющих интерес для ученых. Но аппарат Genesis 08.09.2004 приземлился очень жестко (разбился при скорости 300 км/час) в пустыне Юта (не открылись парашюты). Однако ученым удалось извлечь из обломков остатки солнечного ветра для изучения.
22 сентября 2006 года на орбиту Земли была выведена солнечная обсерватория HINODE (Solar-B, Hinode ). Обсерватория создана в японском институте ISAS, где разрабатывалась обсерватория Yohkoh (Solar-A) и оснащена тремя инструментами: SOT — солнечный оптический телескоп, XRT — рентгеновский телескоп и EIS — изображающий спектрометр ультрафиолетового диапазона. Основной задачей HINODE является исследование активных процессов в солнечной короне и установление их связи со структурой и динамикой магнитного поля Солнца.
В октябре 2006 года была запущена солнечная обсерватория STEREO . Она состоит из двух идентичных космических аппаратов на таких орбитах, что один из них постепенно отстанет от Земли, а другой обгонит её. Это позволит с их помощью получать стереоизображения Солнца и таких солнечных явлений, как корональные извержения массы.